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Community Characterization in Temporal Networks, Release 0.0.1

Community Characterization in Temporal Networks is our python wrap-up for applying dynamic community detection
on temporal networks obtained from spike-train data. We generate spiking neuronal activity with varying commu-
nity events and compare the performances of 5 different community detection algorithms: MMM, Infomap, Tensor
Factorization, DSBM and DPPM where DPPM is not included in this package since it is available in MATLAB.

CONTENTS: 1
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CHAPTER
ONE

INTRODUCTION

1.1 Installation/Usage

As the package has not been published on PyPi yet, it CANNOT be installed using pip.

For now, the suggested method is to put the file Temporal_Community_Detection.py in the same directory as your
source files and call:

from Temporal_ Community_Detection import temporal_network

If you additionally play with synthetically generated data, refer to the helpers.py file and call:

from helpers import *
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CHAPTER
TWO

GENERATING TIME SERIES OF SPIKING NEURONS

One can use the below framework to create time series of spiking neurons which are synchronized in various assym-
blies. This behavior is exhibited as planted community structure. Note that this package allows simulation of different
community events which can be found in The Temporal Network class.

2.1 Planting dynamic communities into synthetic time series data

We are going to simulate a growing community evolution scnerio in which one community keeps expanding over time.

#### Inputs

fixed_size = int(abs(np.random.normal(30,10))) # choose a fixed number for size of each.
—community

layers = 6

num_neurons = fixed_size*layers

comm_sizes = [fixed_size for i in range(layers)]

spike_rates = [int(abs(np.random.normal(20,8))) for i in range(layers)]
display_truth(comm_sizes, community_operation = 'grow')

We then create associated time series by planting in dynamic communities determined by the above parameters. We
jitter a master spike randomly in order to create communities. We also choose a window size at which a community
event will happen.

window_size = 1000 # size, in frames, each adjacency matrix correspond to. better to be.
—equal to bin_size
k = 5 #parameter for jittering the spikes

spike_rates = [int(abs(np.random.normal(20,8))) for i in range(layers)]

spikes = create_time_series('grow', comm_sizes, spike_rates, windowsize = window_size, k.
—= k)
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Fig. 1: Colors indicate different community labels in a community expansion scnerio. In the left panel, we consider
neurons that aren’t part of any communities as a one big community which is lumped together, whereas in the right
panel, we assign a unique community label for each neuron that they keep belong until they join the expanding com-
munity over time.
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Fig. 2: Spike train generated by Poisson process with planted community structure.

2.1. Planting dynamic communities into synthetic time series data 7



Community Characterization in Temporal Networks, Release 0.0.1

2.2 Constructing chronologically ordered set of network states

We bin the spikes into time-windows and compute positive maximum cross-correlation. We choose our bin size equal
to window size to capture community events properly. We also multiply the spike trains with a gaussian kernel to
maximize the correlation.

adjacency_matrices = []

standard_dev = 1.2 # for gaussian kernel

binned_spikes = bin_time_series(spikes, window_size, gaussian = True, sigma = standard_
—dev)

for i in range(layers):
adjacency_matrices.append(cross_correlation_matrix(binned_spikes[i])[0])

8 Chapter 2. Generating time series of spiking neurons
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Fig. 3: Resulting adjacency matrices for each snapshot. Observe the planted community structure in each matrix,

2.2. Constructing chronologically ordered set of network states 9



Community Characterization in Temporal Networks, Release 0.0.1

10 Chapter 2. Generating time series of spiking neurons



CHAPTER
THREE

DYNAMIC COMMUNITY DETECTION (DCD)

Once we have a set of n by n adjacency matrices for a temporal network with T many snapshots, we can create a
temporal_network object. One can input either a list of adjacency matrices, an edge list or, a supra-adjacency matrix
in order to construct the temporal network.

3.1 Skeleton coupling

The API is designed to perform a GridSearch on the parameter spaces of algorithms. For example, if one is utiliz-
ing skeleton coupling Multilayer Modularity Maximization, then you can provide a range of values for resolutions
parameter and interlayer edge weights. Note that by default, interlayer coupling will be uniform diagonal.

interlayer_edge_weights = np.linspace(®, 1, 6)
resolutions_parameters = np.linspace(0.9, 1.1, 6)

partitions, C = TN.run_community_detection(method = 'MMM', ## modularity maximization
update_method = 'skeleton', ## skeleton coupling
interlayers = interlayer_edge_weights,
—#gridsearch parametersl
resolutions = resolution_parameters, #gridsearch.,
—parameters2
spikes = spikes) # Spike train

Alternatively, if one wants to use skeleton coupling with Infomap, below is an example code. Note that, if one wants
to test a single parameter, they need to pass an array-like for the GridSearch to run properly.

interlayer_edge_weights = [0.2]
edge_thresholds = [0.5]

thresholded_adjacency_matrices = []

#we need to build a new temporal network object in which edge weights are thresholded

for i in range(layers):
thresholded_adjacency_matrices.append(threshold(adjacency_matrices[i],edge_

—thresholds[0]))

TN_thresholded = temporal_network(size, length, window_size, data = 'list__adjacency',.
—list_adjacency = thresholded_adjacency_matrices, omega = 1, kind = 'ordinal')

pred_partitions, C = TN_thresholded.run_community_detection(method = 'Infomap', ##.
—modularity maximization
update_method = 'skeleton', ## skeleton coupling

(continues on next page)
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(continued from previous page)

interlayers = interlayer_edge_weights,
w#gridsearch parametersl

thresholds = edge_thresholds, #gridsearch.,
—parametersz

spikes = spikes) # Spike train

In general, below code returns a dictionary whose values are accessed by '%d,%d'%(t,node) where 0 <=t <=
Tnax — 1 is the layer id in which a node is belong to and node is the node id. Each value is a list of nodes (or an empty
list) indicating the skeleton coupling assignment of the node in snaphot t.

membership_static = TN.infomap_static(adjacency_matrices)
bridge_links = TN.find_skeleton(membership_static)

membership_static = TN.MMM_static()
bridge_links = TN.find_skeleton(membership_static)

Refer to the supplementary material of the paper for the psedocode computing skeleton coupling edges.

3.2 Computing partition quality

Once we found predicted partitions, we can compare them with the ground truth to compute accuracy of the algorithms
on a grid of parameters. For example, one can compute normalized mutual information (NMI), adjusted rand index
(ARI), accuracy and F1-scores.

NMI_mmm = np.zeros((len(interlayers), len(resolutions)))
ARI_mmm = np.zeros((len(interlayers), len(resolutions)))
ACC_mmm = np.zeros((len(interlayers), len(resolutions)))
F1S_mmm = np.zeros((len(interlayers), len(resolutions)))

true_labels = generate_ground_truth(comm_sizes, community_operation = 'grow')

for i, e in enumerate(interlayers):
for j, f in enumerate(resolutions):
NMI_mmm[i][j] = normalized_mutual_info_score(true_labels,.,
—list(C[i*len(resolutions)+j].astype(int)))
ART _mmm[i][j] adjusted_rand_score(true_labels, list(C[i*len(resolutions)+j].
—astype(int)))
F1S_mmm[i][j]
—,average = 'weighted'
ACC_mmm[i][j] accuracy_score(true_labels, list(C[i*len(resolutions)+j].
—astype(int)), normalize = True)

f1_score(true_labels, list(C[i*len(resolutions)+j].astype(int)),.

I~
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Fig. 1: Shade of the color represents different partition quality metrics in each panel.
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CHAPTER
FOUR

THE TEMPORAL_NETWORK CLASS

class temporal_network.temporal_network(size, length, window_size, data, **kwargs)

Bases: object

Temporal network object to run dynamic community detection and other multilayer network diagnostics on.
Temporal network is a memoryless multiplex network where every node exists in every layer.
size
Number of nodes in any given layer.
Type
int
length
Total number of layers.
Type
int
nodes
A list of node ids starting from 0 to size-1.
Type
list
windowsize
Assuming that temporal network is created from a continous time-series data, windowsize is the size of the

windows we are splitting the time-series into.

Type
int
supra_adjacency
The supra adjacency matrix to encode the connectivity information of the multilayer network.
Type
array, size*length x size*length
list_adjacency

A list of arrays of length 1ength where each array is size x size encoding the connectivity information
of each layer.

Type

list, [arrayl, array?2, ...]

15
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edge_list
A list of length 1ength of lists where each element of the sublist is a 4-tuple (i,j,w,t) indicating there is an

edge from node i to node j of nonzero weight w in the layer t. So, every quadruplet in the t’th sublist in
edge_list has 4th entry t.

Type
list, [listl, list2, ...]

Parameters
* size (int) — Number of nodes in any given layer.
* length (int) — Total number of layers.
e window_size (int) — Size of the windows the time series will be divided into.

» data (str) - temporal_network accepts three types of connectivity input,
supra_adjacency, list_adjacency and edge_list (see the attributes). So, we
must specify which one of these types we are submitting the connectivity information to the
temporal_network. Accordingly, this parameter can be one of the supra__adjacency,
list__adjacency and edge__list, respectively.

Once the data type is understood, object converts the given input into the other two data types
so that if it needs to use one of the other types(it is easier to work with list_adjacency
for example, but some helper functions from different libraries such as igraph, processes
edge_list better), it can switch back and forth quicker.

e **kwargs —

supra_adjacency: array, size*length x size*length
The supra adjacency matrix to encode the connectivity information of the multilayer net-
work. Should be provided if data = supra__adjacency.

e **kwargs —

list_adjacency: list, [arrayl, array2,...]
A list of arrays of length length where each array is size x size encoding the connec-
tivity information of each layer. Should be provided if data = list__adjacency.

e **kwargs —

edge_list: list, [list1, list2, ...]
A list of length length of lists where each element of the sublist is a 4-tuple (i,j,w,t)
indicating there is an edge from node i to node j of nonzero weight w in the layer t. So,
every quadruplet in the t'th sublist in edge_list has 4th entry t. Should be provided if
data = edge__list.

o **kwargs —

omega: int
Interlayer edge coupling strength. Should be provided if data is 1ist__adjacency or
edge__list. For now, we will assume all the coupling is going to be diagonal with a
constant strength.

TODO: extend omega to a vector(for differing interlayer diagonal coupling strengths) and
to a matrix(for non-diagonal coupling).

e **kwargs —

kind:
Interlayer coupling type. Can be either ordinal where only the adjacent layers are cou-

16 Chapter 4. The temporal_network class
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pled or cardinal where all layers are pairwise coupled with strength omega. Should be
provided if data is 1ist__adjacency or edge__list.

MMM_static(Q)
Running leiden algorithm on the individual layers of temporal network for skeleton coupling.

Returns
inter_membership — List that contain layer, membership and node information respectively.

Return type
triple list

aggragate (normalized=True)

Helper function to aggragate layers of the temporal network.

Parameters
normalized (Bool) — divides the total edge weight of each edge by the number of lay-

ers(self.length).

Return type
n x naggragated adjacecy array.

bin_time_series(array, gaussian=True, **kwargs)
Helper function for windowing a given time series of spikes into a desired size matrices.
Parameters

e array (np.array)—n Xx t array where n is the number of neurons and t is the length of
the time series.

e gaussain (bool (Default: True))- If True, every spike in the time series is multi-
plied by a 1d-gaussian of size sigma.

» **kwargs — sigma: size of the gaussian (See gaussian_filter).

Returns
A — Matrix of size 1 x n x windowsize where 1 is the number of layers (= t/self.

windowsize), n is the number of neurons.

Return type
np.array

binarize (array, thresh=None)
Helper function to binarize the network edges.
Parameters
e array (np.array) — Input array corresponding to one layer of the temporal network.

e thresh (float (Default: None)) - if provided, edges with weight less than thresh
is going to be set to 0 and 1 otherwise. If not provided, thresh = 0.

Returns
binary_spikes — n x n binary adjacency matrix.

Return type
np.array

community (membership, ax)
Helper function to visualize the community assignment of the nodes. At every run, a random set of colors
are generated to indicate community assignment.

Parameters

17
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* membership (1ist)— A list of length number of communities where each list contains
(node,time) pairs indicating the possesion of that node at the time to that community.

* ax (matplotlib.axis object)— An axis for plotting of the communites.
Returns

e comms (array of shape n x t)— array to be visualized.

e color (list) — list of colors to be plotted for future use.

community_consensus_iterative(C)
Function finding the consensus on the given set of partitions. See the paper:

‘Robust detection of dynamic community structure in networks’, Danielle S. Bassett, Mason A. Porter,
Nicholas F. Wymbs, Scott T. Grafton, Jean M. Carlson et al.

We apply Leiden algorithm to maximize modularity.

Parameters
C (array)— Matrix of size parameter_space x (length x size) where each row is the
community assignment of the corresponding parameters.

Returns
partition — See https://leidenalg.readthedocs.io/en/stable/

Return type
Leidenalg object

create_igraph()
Helper function that creates igraphs for modularity maximization.

disjoint_union_attrs(graphs)
Helper function to take the disjoint union of igraph objects. See slices_to_layers.

dsbm_via_graphtool (edge_list, deg)
Running DSBM using https://graph-tool.skewed.de

Overlap is True by default according to https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.042807
Parameters

e edge_list (list ([listl,list2,...])) — List of lists of length length’ “where
each list contains the edge list of the corresponding layer. Output
of " “process_matrices.

* deg (Bool) — If True degree_corrected model will be used and vice versa.
Returns

* membership (list([listl,list2,... ])) — List of lists of length number_of_communities
where each list contains the community assignment of the nodes it contains.

* labels (/ist) — List of length 1length x size containing all the community assignments.

edgelist2edges()
Helper function for creating edge lists for iGraph construction.

Returns

« all_edges (/ist ([listl,list2,... ])) — A list of length length lists where each list contains node
pairs (i,j) in the corresponding layer.

* all_weights (list ([list], list2,...])) — A list of length length lists where each list contains
floats in the corresponding layer indicating the edge weight between the node pair.

18 Chapter 4. The temporal_network class
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find_comm_size(n, list_of lists)

Helper function for finding the comunities in the next layer of a given node.
Parameters
e n (int) — Node id to be found whose communities of.
e list_of_lists (1ist) - First dimension of output of infomap_static.
Returns
e comm (/ist) — Community membership of the given node in the next time step.
¢ len (int) — Size of that community.

find_skeleton(static_memberships)

Function that finds links of skeleton coupling.

Parameters
static_membership (1ist)— Output of infomap_static.

Returns
bridge_links — Dictionary of skeleton links.

Return type
dict

get_attrs_or_nones(seq, attr_name)

Helper method.

get_normalized_outlinks (thresholded_adjacency, interlayer)

Helper function for neighborhood coupling that finds the interlayer neighbors of a every node in the next
and previous layers and normalizes edge weights.

Parameters

» thresholded_adjacency (1ist) — List of adjacency matrices corresponding to every
layer of the temporal network.

* interlayer (float) — The node itselves edge weight that is connected to its future(or
past) self that is the maximal among other interlayer neighbors.

Returns

* interlayer_indices (dict (dict[‘t,i’])) — Dictionary of interlayer neighbors of a node i in
layer t.

* interlayer_weights (dict (dict[ ‘t,i’])) — Dictionary of interlayer weights corresponding to
indices of node i in layer t.

infomap (inter_edge, threshold, update_method=None, **kwargs)

Function that runs Infomap algorithm on the temporal network.
https://www.mapequation.org
Parameters
e inter_edge (float) — Interlayer edge weight.

e threshold (float) — Value for thresholding the network edges. Functional networks
obtained by correlation is going to need thresholding with infomap.

¢ update_method (None, 1ocal, global, neighborhood or skeleton. Default None.) —
Updating the interlayer edges according to either of these methods.

19
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e **kwargs —

spikes: array
if local or global update method is being used, initial spikes that is used to obtain
the correlation matrices needs to be provided.

infomap_static (thresholded_adjacency)

Helper function for running infomap on the individual layers of temporal network.

Parameters
thresholded_adjacency (1ist) — List of adjacency matrices.

Returns
inter_membership — List that contain layer, membership and node information respectively.

Return type
triple list

leiden(G, interslice, resolution)

Function that runs Multilayer Modularity Maximization using Leiden solver.

Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing well-connected commu-
nities. Sci Rep 9, 5233 (2019). https://doi.org/10.1038/541598-019-41695-z

Parameters

e G(1ist ([gl,g2,...]1))— A list of igraph objects corresponding to different layers of
the temporal network.

e interslice (float)- Leidenalg package automatically utilizes diagonal coupling of lay-
ers. If a float is provided as interslice a uniform interlayer coupling weight is going to
be applied for all nodes in all layers. If a list of length size is provided, every node will be
coupled with themselves with given weight. If alist of, length length -1, lists is provided,
then you can tune individual interlayer weights as well.

e resolution (float) — Resolution parameter.
Returns
e partitions (leidenalg object. See https://leidenalg.readthedocs.io/en/stable/)
* interslice_partitions (leidenalg object. See https://leidenalg.readthedocs.io/en/stable/)

make_tensor (rank, threshold, update_method=None, **kwargs)

Helper function to utilize Tensor Factorization Approach described in:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086028
Parameters
» rank (int) — Input for predetermined number of communites to be found.
¢ threshold (float) — Edge threshold for adjacency matrices.

» update_method (local, global or ““neighborhood " (Default: None)) — Updating the
edges according to one of these methods although this is not an applied technique in the
literature. Go with None unless you know what you are doing.

e **kwargs —

spikes: array
Initial spike train matrix of sizen x t

Returns

20 Chapter 4. The temporal_network class
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» weights_parafac (array) — See the paper.
« factors_parafac (array) — See the paper.

membership (interslice_partition)

Returns the community assignments from the Leiden algorithm as tuple (n,t) where n is the node id t is
the layer that node belongs to.

neighborhood_f£flow(layer, node, interlayer_indices, interlayer_weights, thresh)

Helper function to evaluate the weights of the individual non-diagonal interlinks using jensenshannon en-
tropy. We also threshold weaker interlinks and keep only the ones that have maximal interlayer edge weight
for computational purposes. In this sense, we are coupling a maximal neighborhood around a node with
previous and future layer.

Parameters
e layer (int) — Layer that node belongs to.
¢ node (int) — Node ID
¢ interlayer_indices (dict) — First output of the get_normalized_outlinks.
e interlayer_weights (dict) — Second output of the get_normalized_outlinks.

 thresh (float) — Value for thresholding the weakest thresh percentage of interlinks that
this node has.

¢ Return -

* w(float) — Neighborhood coupling weight.
e nbr (dict) — Thresholded list of maximal interlinks

neighbors (node_id, layer)

Helper function for finding the neighbors of a given node.
Parameters
e node_id (int) — ID of the node to be found the neighbors of.
* layer (int) — Layer ID of the node that it belongs to.

Returns
neighbors — list of node IDs of the neighbors of node_id in layer layer.

Return type
list

process_matrices(threshs)

Helper function preparing adjacency matrices into the pipeline for DSBM converting the matrix into an
edge_list.

Parameters
e threshs (1-D array) — Set of threshold values.

e Returns —

e processed_matrices (dict) — Dictionary of edge list values corresponding to each
given threshold value.

21
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process_tensor (factors, rank)

Helper function for converting the output of make_tensor as in the function membership.
Parameters
¢ factors (array) — First output of make_tensor.

e rank (int) — Number of communities to be found which is an ad-hoc parameter in this
algorithm.

Returns

* membership (list ([list],list2,... ])) — List of length rank of lists where each list contains
the membership information of the nodes belonging to corresponding community.

e comms (/ist) — List of length length x size for community assignment.

raster_plot (spikes, ax, color=None, **kwargs)

Plots the raster plot of the spike activity on a given axis. if color provided, raster includes the community
assignments.

Parameters
e spikes (array n x t) — Initial spike train array for n nodes of length t.
e ax (matplotlib.axis object) — axis to be plotted.

¢ color (1ist)— Second output of the self.community. List of colors of length number
of communities.

e **kwargs —

comm_assignment: array
First output of the self.community. If not provided raster is going to be plotted blue.

run_community_detection(method, update_method=None, consensus=False, **kwargs)
Wrap-up function to run community detection using one of the 4 methods:

1) Multilayer Modularity Maximization (MMM): https://leidenalg.readthedocs.io/en/stable/
P. J. Mucha, T. Richardson, K. Macon, M. A. Porter and J.-P. Onnela, Science 328, 876-878 (2010).
2) Infomap: https://www.mapequation.org
Mapping higher-order network flows in memory and multilayer networks with Infomap, Daniel Edler, Lud-
vig Bohlin, and Martin Rosvall, arXiv:1706.04792v2.

3) Non-negative tensor factorization using PARAFAC: http://tensorly.org/stable/index.html

Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor
Factorization Approach, Laetitia Gauvin , André Panisson, Ciro Cattuto.

4) Dynamical Stochastic Block Model (DSBM): https://graph-tool.skewed.de

Inferring the mesoscale structure of layered, edge-valued, and time-varying networks, Tiago P. Peixoto,
Phys. Rev. E, 2015.

Parameters

e method (str) — Either MMM, Infomap, PARA_FACT " (Tensor Factorization) or
* “DSBM indicating the community detection method.

22 Chapter 4. The temporal_network class
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» update_method (str (Default: None)) - Interlayer edges will be processed based
on one of the three methods, either ‘local’, ‘global’, ‘neigborhood’ and ‘skeleton’. Available
only for MMM and Infomap.

» consensus (bool) — Statistically significant partitions will be found from a given set of
parameters. See community_consensus_iterative.

¢ **kwargs —

interlayers: 1-D array like
A range of values for setting the interlayer edges of the network. Pass this argument if
you are using MMM or Infomap.

e **kwargs —

resolutions: 1-D array like
A range of values for the resolution parameters. Pass this argument if you are using MMM.

e **kwargs —

thresholds: 1-D array like
A range of values to threshold the network. Pass this argumment if you are using
Infomap, PARA_FACT or DSBM.

e **kwargs —

ranks: 1-D array like
A range of integers for ad-hoc number of communities. Pass this argument if you are
using PARA_FACT.

e **kwargs —

degree_correction: list
A list of boolean values(either True or False) for degree correction. Pass this argument
if you are using DSBI.

e **kwargs —

spikes: 2-D array
Initial spike train array containing the spikes of size n x t. Pass this argument if your
update_method is local or global.

Returns

* membership_partitions (dicr) — Dictionary with keys as first set of parameters lists and
second set of parameters list indices indicating the community assignment of each node.

* C (array) — Matrix of size parameter_space x(length x size). This is the input for
community_consensus_iterative.

slices_to_layers(G_coupling, interlayer_indices, interlayer_weights, update_method, slice_attr='slice’,
vertex_id_attr="id', edge_type_attr="type', weight_attr="weight")

Actual function implementing non-diagonal coupling with Modularity Maximization. Leiden algorithm’s
python package inherently only allows diagonal coupling. So, this function is needed for non-diagonal
coupling.

threshold(array, thresh)
Helper function to threshold the network edges.
Parameters

e array (np.array) — Input array corresponding to one layer of the temporal network.
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* thresh (float) - Threshold to keep the edges stronger than this value where weaker edges
are going to be set to 0.

Returns
thresholded_array — n x n thresholded adjacency matrix.

Return type
np.array

time_slices_to_layers(graphs, interlayer_indices, interlayer_weights, update_method,
interslice_weight=1, slice_attr='slice’, vertex_id_attr="id', edge_type_attr="type’',
weight_attr="weight")

Helper function for implementing non-diagonal coupling with Modularity Maximization.  See
slices_to_layers.

trajectories (thresh=0.9, node_id=None, community=None, edge_color=True, pv=None)

Function graphing the edge trajcetories of the temporal network.
Parameters
¢ thresh (float) — Threshold for keeping filtering the edge weights.

e node_id (int (Default: None)) — If None, function is going to graph all of the
nodes’s trajectories.

e community (array (Default: None)) - Firstoutputof self.community indicating
the community assignment of the nodes if exists.

¢ edge_color (bool) — Different colors on each layer if True, black otherwise.
* pv (list)— Pass alist of pv cell indices or None —dashes the pv cells.

update_interlayer (spikes, X, omega_global, percentage, method)

Function for local and global updates. This function assumes diagonal coupling and evaluates the interlink
weights according to the local or global change in some nodal property, spike rates in our case.

Parameters
¢ spikes (array) — Initial spike train array.

e X (float)— Value for determining if the nodal property between consecutive layers(local),
or compared to global average, is less than X standard deviation.

« omega_global (float) — Initial interlayer value for all diagonal links.

» percentage (float) — If the nodal property is less than X standard deviation, for a given
node, interlayer edge weight is adjusted so that new weight is equal to omega_global x
percentage.

* method ('Iocal' or 'global')—Method for updating the interlayer edges. If local a com-
parison between consecutive layers is made and if global, overall average of the spike rates
are hold as a basis.

e Returns —

e interlayers (list) — A list of length (length-1) x size indicating interlayer edge
weights of every node.

helpers.bin_time_series(array, binsize, gaussian=True, **kwargs)

Helper function for windowing the time series into smaller chunks.

Parameters
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e array (2_D array)—n X t matrix where n is the number of neuorons and t is the length
of the time series.

* binsize (int) - Size of each window. This number needs to be smaller than t and a positive
divider of t.

» gaussian (bool (Default: True)) - If True, each spike is going to be multiplied by a
1-D gaussian of length sigma.

e **kwargs —

sigma: float
Size of the gaussian. See gaussian_filter.

Returns
A — Matrix of size 1 x n x t where I is the number of windows(=t/binsize), n is number of
neurons and t is the length of the time series.

Return type
array

helpers.binarize(array, thresh=None)

Function for binarizing adjacency matrices.
Parameters
e array (array like)— Cross-correlation matrix.

» thresh (float (Default: None)) - If None, entries that are non-zero are going to be
set to 1. If a value between [0,1] is given, then every entry smaller than thresh will be set
to 0 and 1 otherwise.

Returns
binary_spikes — Binarized cross-correlation matrix of same size.

Return type
array like

helpers.community_consensus_iterative(C)
Function finding the consensus on the given set of partitions. See the paper:

‘Robust detection of dynamic community structure in networks’, Danielle S. Bassett, Mason A. Porter, Nicholas

F. Wymbs, Scott T. Grafton, Jean M. Carlson et al.
We apply Leiden algorithm to maximize modularity.

Parameters
C (array) — Matrix of size parameter_space x (length * size) where each row is the
community assignment of the corresponding parameters.

Returns
partition — See https://leidenalg.readthedocs.io/en/stable/

Return type
Leidenalg object

helpers.consensus_display (partition, n, t)

Helper function to visualize the consensus from community_consensus_iterative.
Parameters
e partition (Leidenalg object) — See https://leidenalg.readthedocs.io/en/stable/

* n (int) — Number of neurons.
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* t (int) — Number of layers.
Returns
* comms (array) — Community membership array of sizen x t.
* cmap (matplotlib object) — Colormap used to plot the membership information.
* color (/ist) — List of strings encoding the colors of the communities.
helpers.create_time_series(operation, community_sizes, spiking_rates, spy=True, windowsize=1000, k=5)
Main function for creating spike trains using Homogeneous Poisson Process.
Parameters
* operation (grow, contract, merge or transient) — Community operation.

e community_sizes (list or list of lists) — If the operation is grow (or
contract), this should be a list indicating the number of neurons joining (or leaving from)
the main community. If the operation is merge or transient, then this should be a list
of lists([list1,list2,...]) where each list contains sizes of the communities in that layer.

» spike_rates (I1ist or list of lists) — This should be of same size and shape as
community_sizes indicating the spike rates of the corresponding communities.

* spy (bool (Deafult: True)) - Displays the time series if True.

* windowsize (int (Default: 1000)) - Length of the window size for a new layer of
events to be created.

* k (int (Default: 5))- Constant for jittering the spikes when creating new communi-
ties.

Returns
spikes — Matrix of size n x t where n is the number of neuorons and t is the length of the time
series.

Return type
array

helpers.cross_correlation_matrix(data)

Main function to call for computing cross-correlation matrix of a time series.

Parameters
data (array) —n x t matrix where n is the number of neuorons and t is the length of the time
series.

Returns
e X full (array) —n x n symmetric cross-correlation matrix.
* X (array) —n x nupper triangular cross-correlation matrix.
* lag (array) —n x n lag matrix.

helpers.display_truth(comm_sizes, community_operation, ax=None)
Function for displaying the ground truths.

Parameters

e comm_sizes (list, or list of lists) - This will be passed to
generate_ground_truth where pad is True by default.

» community_operation (grow, contract, merge or transient)— Type of the community
event which will also be passed to generate_ground_truth.
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e ax (matplotlib object (Default: None))-IfNone,anew axis will be created, oth-
erwise the ground truth will be plotted to the provided axis.

helpers. find_repeated(/)

Helper function for generating transient communities.

helpers.gaussian_filter (array, sigma)
Function that multiplies vectors with a gaussian.

Parameters
e array (1_D array like)— Input vector.

» sigma (float) - 1 spike turns into 3 non-zero spikes(one at each side of smaller magnitude)
with sigma=0.25. 1 spike turns into 5 non-zero spikes(two at each side of smaller magnitude)
with sigma=0.50. 1 spike turns into 9 non-zero spikes(four at each side of smaller magnitude)
with sigma=1, and so on..

Returns
array — Gaussian vector.

Return type
1_D array like

helpers.generate_ground_truth(comm_sizes, method='scattered’, pad=False, community_operation='grow")

Main function that generates ground truth labels for the experiments. Community labels according to two meth-
ods one in which the rest of the network except the planted communities are scattered i.e. they all have their own
community or they are all in one community, integrated.

Parameters

e comm_sizes (1ist, or list of 1lists) - If the community_operation is grow (or
contract), this should be a list indicating the number of neurons joining (or leaving from)
the main community. If the community_operation is merge or transient, then this
should be a list of lists([list1,list2,...]) where each list contains sizes of the communities
in that layer. For example, [[6,1,1,1,1],[6,4]] indicates a 6 neuron community in the first
layer and additional 4 neurons, that are independently firing, merges into 1 community in the
second layer.

e method (scattered or integrated (Default: ‘scattered’)) — If the
community_operation is grow (or contract), two types of ground truths can be
prepared. Integrated is the one where independently firing neurons are grouped together
into one single community and scattered is the one with independently firing neurons.

* pad (bool (Default: False))— If True, the truth will be padded from the beginning
and the end by the exact same community membership.

e community_operation (grow, contract, merge or transient (Default: ‘grow’)) — Type
of community events that are available. Community expansion, community contraction,
community merge and transient communities.

Returns
truth_labels — List of truth labels, of length n*t where n is the number of neuorons and t is the
number of layers. If pad, length will be n* (t+2).

Return type
list

helpers.generate_transient (comm_per_layer)

Helper function for creating the time series for the transient communities.
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Parameters
comm_per_layer (1ist of 1lists)— List of lists of length number of layers where each
list contains the number of communities at that layer.

Returns

» comm_sizes (/ist of lists) — Sizes of the communities in the corresponding layers which will
be passed to create_time_series.

* spike_rate (/ist of lists) — Randomly selected corresponding spike rates for the Homogeneous
Poisson process that generates spike trains.

¢ num_neurons (int) — Number of neurons.

helpers.getOverlap(a, b)

Helper function for generating transient communities. Finds repeated indices.

helpers.get_repeated_indices (/)

Helper function for generating transient communities.

helpers.information_recovery(pred_labels, comm_size, truth, interlayers, other_parameter, com_op)

Function for calculating the quality of the resulting partitions on a parameter plane and visualizes the quality
landscape according to NMI, ARI and F1-Score.

Parameters

» pred_labels (1ist) — List of truth labels appended in the order of layers. This should be
the same length as the output of generate_ground_truth.

e comm_size (list, or list of lists) - This will be passed to
generate_ground_truth that assumes pad to be True.

e truth (integrated or scattered) — Same as in generate_ground_truth.

» interlayers (I_D array like)- To get the landscape information on a plane of param-
eters, we pass two array like object. This one is the y-axis one on the result.

* other_parameter (1_D array like)- This is the x-axis array for quality.

* com_op (grow, contract, merge or transient)— Same as in generate_ground_truth.
Returns

* fig (matplotlib object) — Figure object for the plots.

* ax (matplotlib object) — Axis objects for the plots.

helpers. jitter(spike, k)

Function for randomly jittering spikes when generating communities.
Parameters
* spike (array) — Spike train to be jittered.
* k (int) — Number of time frames, to the right or to the left, for a spike to be jittered.

Returns
jittered — Jittered spike train.

Return type
array

28 Chapter 4. The temporal_network class



Community Characterization in Temporal Networks, Release 0.0.1

helpers.max_norm_cross_corr (x/, x2)

Function for computing maximum cross-correlation.
Parameters
e x1(1_D array like) - First vector.
e X2 (1_D array like) - Second vector.
Returns
* max_corr (int) — Maximum cross-correlation between the two input vectors.
* lag (int) — Lag difference where the maximum cross-correlation occurs.

helpers.normalized_cross_corr(x, y)

Function to compute normalized cross-correlation between two vectors.
Parameters
* X (1_D array like) - First vector.
e y(1_D array like)- Second vector.

Returns
corr_array — Correlation array between x and y.

Return type
array

helpers.space_comms (comm_size)

Helper function for spacing the communities randomly for the transient communities.

helpers.spike_count (spikes, ax, num_bins=None, t_min=None, t_max=None)

Helper function to visualize the distribution of the number of spikes in a given spike train.
Parameters
» spikes (array) — Spike train matrix of sizen x t.
* ax (matplotlib axis)— Axis for distribution to be plotted.

e num_bins (int (Default: None)) - If None, this will be the difference between maxi-
mum and minimum number of spikes in a population.

e t_min(int (Default: None))-ifNone, thiswill be 8, otherwise spikes will be counted
in the given range.

e t_max(int (Default: None))-ifNone, thiswillbe t, otherwise spikes will be counted
in the given range.

Returns
* n (array) — The values of the histogram bins.
* bins (array) — The edges of the bins.
helpers.threshold(array, thresh)

Function for thresholding the adjacency matrices.
Parameters
e array (array like) - Cross-correlation matrix.

 thresh (float) — Value in which every entry smaller than thresh will be set to 0 and
entries greater than thresh will stay the same.
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Returns
threhsolded_array — Thresholded cross-correlation matrix of same size.

Return type
array like
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